
A Systematic Approach to Hyperparameter Tuning
for Neural Network-Based PDE Solvers
Hongzhang “Steve” Shao

February 1, 2025

This note provides a systematic approach to selecting hyperparameters
for training neural networks. 1 Specifically, we consider the context of 1 It is important to note that particular

“engineering tricks” that work for one
problem may not work for another.
Instead, we hope this note provides
a systematic approach to achieving
stable training loss and good policy
performance.

solving high-dimensional Hamilton-Jacobi-Bellman (HJB) equations in
Brownian control problems using deep learning-based methods, e.g.
the DeepBSDE and Deep Splitting methods.

Overview

Our approach consists of three phases:

• Exploration: quick trial and error to choose good hyperparameters

• Improvement: identify issues and useful tricks fix them

• Exploitation: push to the limit

The key is to focus on the first two phases, not the exploitation phase.

Core Metrics

Since we train solvers for control problems, the most important met-
ric is policy performance. We also consider the loss curve, focusing
on convergence stability and final loss value. When the loss does not
converge, policy performance tends to be poor.

Start with Minimal Representative Examples

We recommend starting with minimal yet meaningful examples. 2 2 The idea is to apply Steps 1 and
2 iteratively on progressively more
complex problems. Problems in lower
dimensions tend to be more tractable
and interpretable. This approach allows
for faster iteration cycles and makes it
easier to identify and debug issues.

Once a good configuration is found, move to a slightly more complex
version and repeat the process.

Step 1: Exploration of Hyperparameters

In this step, we perform quick trial and error to identify good config-
urations. We test one change at a time to isolate effects. 3 3 Three assumptions are made here:

1. Generality: A successful change
should improve performance across
multiple scenarios.

2. Monotonicity or Unimodality: Hy-
perparameter effects are predictable
(e.g., larger networks monotonically
improve accuracy up to a point).

3. No Synergy: If individual changes
(A or B) fail, their combination
(A+B) is unlikely to succeed.

The common hyperparameters and their typical values are listed in
Table 1. Please remember to add problem-specific hyperparameters,
e.g., initial state distribution, diffusion term multiplier (both are
commonly used to for getting better coverage of the sample space),



a systematic approach to hyperparameter tuning for neural network-based pde solvers

2

and most importantly, the reference policy used to generate training
data.

Hyperparameters Values
Precision Typically float64

Neural network architecture Typically MLP
Number of hidden layers Typically 2, 3, or 4

Number of nodes per layers Typically 50 to 200,
or larger than problem dimension.

Activation function Start with ReLU or LeakyReLU
Batch normalization On / off for input, hidden, output layers.

Start with off for all layers.
Gradient clipping Start with none
Delta clipping Start with none
Optimizer Typically Adam
Batch size (training) Powers of 2, such as 128, 256, etc.
Batch size (validation) Powers of 2, larger than training batch size
Learning rate scheduler Start with manual (piecewise constant)
Learning rate (initial) Typically 10−2 or 10−3

Learning rate decay rate Typically 1/2 or 1/10

Learning rate (minimum) Typically 10−5 or 10−6

Total number of iterations TBD (manual adjustment)

Table 1: Hyperparameters and their
typical values

We have the following remarks based on our experience:

• Start with testing network architecture: The first step is to ex-
plore the network architecture. We suggest testing things in the
following order:

1. Number of layers

2. Number of nodes in each layer

3. Activation function

• Target for stable loss convergence: When loss does not converge
stably, we suggest trying things in the following order:

1. Use smaller initial learning rate

2. Use larger batch size

3. Try gradient clipping

4. Try batch normalization

5. Try delta clipping in loss function

• Learning rate scheduler: We suggest starting by manually cutting
the learning rate. 4 5 This helps improve understanding of the 4 The rule of thumb is to cut the learn-

ing rate when the loss curve flattens.
5 We also suggest waiting more pa-
tiently before cutting the learning rate
as it gets smaller.

problem.



a systematic approach to hyperparameter tuning for neural network-based pde solvers

3

Step 2: Model-Based Validation for Improving Policy

Next, we validate solutions (e.g. the trained policy) against domain
knowledge and identify corrective measures. Specifically, we want to:

1. Verify physical plausibility of results,

2. Confirm mathematical consistency with problem structure,

3. Check boundary condition adherence.

Ideally, we want to look from as many angles as possible. 6 6 For example, we can look at:

1. Core metric: Policy perfor-
mance (cost/reward) vs. analyti-
cal/benchmark solutions

2. Other visualizations:
• Temporal trajectories of states

/ actions / policy / system
dynamics. (E.g., is policy smooth
/ stable over time?)

• Surface plots (over states) of
value functions, its gradients,
and policy. (E.g., are they mono-
tonic as expected?)

If we see important issues that cannot be resolved by revisiting Step
1, then we consider certain “engineering tricks” to fix them. For
example, we’ve found the following useful:

• Smoothing to prevent vanishing gradients: In the loss function,
terms like (·)+ may cause vanishing gradients. To prevent this, we
replace this “ReLU” function with a “ELU” or “LeakyReLU” type
function. The smoothed function then gradually converges to the
original “ReLU” function as we proceed to a target training step.

• Shape constraints: For example, if we know that the output from
a network is supposed to be non-negative, we can add a penalty
term for negative values to the loss function.

Step 3: Exploitation

This step aims to push performance to its limit for the final 1% to 5%
improvement. Methods include early stopping and other techniques.

References


	Overview
	Core Metrics
	Start with Minimal Representative Examples
	Step 1: Exploration of Hyperparameters
	Step 2: Model-Based Validation for Improving Policy
	Step 3: Exploitation

